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ABSTRACT

Invariant imbedding is a method for the computational solution
of two-point boundary-value problems. one commnon source of such
problems is in the application of the method of lines, or an ex-
pansion procedure, to a system of partial differential equations.
Such partial differential equations might describe, for example,
the dynamic mechanics of structures such as an aircraft fuselage
or a missile silo.

The research conducted under this grant has been directed to-
ward two objectives. The first objective was to improve the ef-
fectiveness and efficiency of invariant imbedding by providing
means for automatically controlling the associated computational
error within a minimal, or at least reasonable, degree of computa-
tional effort. The second objective was to extend the range of
applicability of invariant imbedding to include singular two-point
boundary-value problems. Such singular problems arise, for example,
by applying the method of lines to partial differential equations
in spherical or cylindrical coordinate systems.

In regard to the first of these objectives, a number of dif-
ferent methods, which are generically termed reZative-error moni-
tors, have been developed and are in the process of being subject-
ed to computational experimentation. As regards the second objec-
tive., it has been shown how to apply the method of invariant im-
bedding to homogeneous linear two-point boundary-value problems.

* The further extension to inhomogeneous problems is presently being
* pursued.
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RESEARCH OBJECTIVES AND STATUS

The work described here was concerned with automatic error

control for invariant imbedding and with the extension of invariant

imbedding to permit solution of singular linear two-point boundary-

value problems. Progress on these two topics is discussed separa-

ely in the following two subsections.

Automatic Error Control

The solutions of the initial-value problem which typically is

integrated numerically in applications of invariant imbedding are

usually not themselves the object of ultimate interest. Rather,

these are intermediate quantities which are used via linear alge-

braic computations to approximate the solution of an underlying

linear two-point boundary-value problem. Because of this situation,

it is not readily apparent how to use modern adaptive initial-value

integration techniques efficiently and effectively within invariant

imbedding.

Nelson and Wiggins [1] studied one method of error control for

initial-value integrations which was specifically designed for the

version of invariant imbedding due to M.R. Scott [2-51. In the

work reported here we view this earlier approach as one of a class

of methods, each of which is defined by quantities which we term

relative-error monitors and associated sensitivity functions. Each

such set of quantities provides a mechanism for approximately con-

trolling that part of the error in the approximate solution of the

underlying two-point boundary-value problem which stems from the

initial-value integration. We now describe this approach to error
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control in some detail.

Consider a linear two-point boundary-value problem (TPBVP) of

the form

u'(z) - A(z)u(z) + B(z)v(z) + s+(z), (la)

v'(z) = C(z)u(z) + D(z)v(z) + s_(z), (ib)

u(0) = a, v(x) = b. (1c)

Here u and v are respectively m and n- dimensional vectors of de-

pendent variables, A,B,C and D are given piecewise continuous mat-

tices of the appropriate dimensions, a and b are given vectors, and

x > 0. If 0 < x < x, where xc is the smallest value of x such

that (1) fails to have a unique solution (i.e. xc is the smallest

eigenlength of (1)), then the solution of (1) is given by

v(z) = T- (z){T(x)b + q,(x) - q£(z)}, (2a)

u(z) = R(z)v(z) + q (z), (2b)

where R,T,qr and q. are determined by the initial-value problem

(IVP)

R'= B + AR-RD-RCR, R(O) = 0, (3a)

T'= -T(CR+D), T(0) = I (= identity matrix), (3b)

qr= (A-RC)qr -Rs- + s+, qr(O) = a, (3c)

q = -T(Cq + s_), q (0) = 0. (3d)
r

In applying (2) to the computational solution of the TPBVP (1),

one normally integrates the IVP (3) from z=0 to z=x, with the values

of R,T,qr and q, at reporting point8 (= values of z at which it is

ultimately desired to compute u and v) being stored during this

integration. Once T(x) and qt(x) have been computed, the

C.}
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approximations to u and v at the reporting points are then deter-

mined from (2) by appropriate numerical linear algebra. References

6-8 contain proofs of the assertions of the preceding paragraph or

discussions of further computational considerations.

In contrast to the situation for IVP's, there is no generally

accepted type of error criterion for TPBVP's. It would seem desir-

able to adopt a criterion of the form that at each reporting point

at least one of the absolute or relative error should meet a speci-

fied tolerance. The difficulty with this basic idea lies in deter-

mining a reasonable measure of the magnitude of the solution in de-

fining the relative error. It seems infeasible, or at least likely

often to be inordinately expensive, to take this magnitude as some

norm of the solution at the particular reporting point in question.

As mentioned above, our approach is to introduce a class of

relative-error monitors for the TPBVP (1), with each such monitor

serving to provide a measure of the magnitude of the solution.

More specifically, a relative-error monitor for (1) is simply

a real-valued function M=M(z) such that

I Jv(z) II < M(z). (4)

Given such a monitor, we take as our objective to control the

errors 6u and 6v, in u and v respectively, so that

116v(z)II < slI+M(z)] (5a)

and

I Iuz) ei [(l+M(z))(l+ IR(z)l )+I lq rz)11] (5b)

at each reporting point, where e (- error tolerance) is specified

*1
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prior to the computation. (We shall use 6y to denote the error

in a computational approximation to a quantity y. We ordinarily

have the --norm in mind, although in the spirit of our work it is

immaterial which of the common vector norms is used, provided the

dependent variables are properly scaled.

In consonance with our basic objective, we wish (5) to be

implied by some type of control on the local truncation error

associated with the numerical integration of the IVP (3). Toward

that end, given a relative-error monitor for the TPBVP (1) we de-

fine associated sensitivity functions to be a quadruple of real-

valued functions WRWTWr and W. such that the inequalities

116R(z) I ! WR(Z),l 16T(z) f eW T(z), (6a,b)

118q r(Z)J EW r £WrZ, JJSq,£(z)J II! W,(z) (6c,d)

imply (5). Given such sensitivity functions, the procedure is to

integrate the IVP (3) so that (6) holds with the errors interpreted

as the local truncation errors; if the IVP is computationally stable

(and this should be checked by multiple numerical integrations),

then (6) holds with the errors taken as the global errors, and

therefore (5) is satisfied.

All of the following are, in the sense of the above definition,

relative-error monitors for (1).

M (z) = I IT (z) I • I I T(x) 1'I IbJ + I q (x) II + IJq (z) 11 (7a)M0(

M1 (z) = IT -(z)T(x)IH -IIbI + lIT- (z)ll'I lq (x)-q (z)Ij, (7b)

M 2 (z) - lTl(z)II'I T(x)b + q,(x) -q,(z)Il, (7c)

.. 1J_ _ _ _ _ _ __ _ _ __ _ _ _ _ _
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and

M3 (z) Jlv(z)II. (7d)

These are listed in order of increasing stringency of the as-

sociated requirement on the error in v. Sensitivity functions

have been developed for all of these monitors. Computational ex-

periments currently are being performed on a suite of test problems.

The results will be reported in [9].

Singular Problems

The method of invariant imbedding has been widely applied to

nonsingular TPBVP's, such as (1) of the preceding subsection, but

little effort seems to have been devoted to its application to

singular differential systems. Scott [l,Sec.V.8] considered suf-

ficient conditions for existence of two different versions of in-

variant imbedding (the "r" and "s" equations) for linear second-

order equations having a regular singular point. The work of

Scott constitutes a significant extension of earlier results of

Banks and Kurowski (101. More recently, Elder [11] showed how to

apply the subscheme of invariant imbedding known as integration-to-

blowup [12,13] to compute the smallest eigenlength of a linear

first-order system having a singularity of the first kind. The

purpose of this work was to show how the approach of Elder can be

extended to apply to the solution of certain singular two-point

boundary-value problems by means of Scott's version [1-4] of in-

variant imbedding. The extension to homogeneous differential

systems of the first kind has been completed, as reported in 114,

* 15]. Th further extension to inhomogeneous problems is in progress,

A ' ,TI n l - l I ,. . i. . .. .<
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and will be described in [16,171. The application to homogeneous

problems will now be described in some detail.

Consider a linear homogeneous first-order differential

system with a singularity of the first kind at z=0,

u'(z) = + A(z u(z) +(_-- + B(z) v(z), (8a)

v' (z) = - + C(z u(z) + ( + D(z) v(z). (8b)

Here u,v and A-D are as in the previous subsection, while A0,B 0 ,

C0 and D are constant matrices of the appropriate dimensions.

We wish to obtain solutions of (8) subject to boundary con-

ditions of the form

u(0+) and v(0+) exist (finite) (9a)

and

v(x) = 8, x > 0. (9b)

Let Y1(z)
Y(z) = " - (10)

i 2 1

be an (m + n) x q matrix the columns of which are a maximal linear-

ly independent system of solutions of (1) subject to (2a), where

Y1 and Y2 have respectively m and n rows. We define the (m + n)

x (m + n) matrix E0 by

E /0 = .A B).

C0 D /
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The salient results of (11] can then be summarized as follows:

Theorem A (Elder [11]): The number (q) of columns in the

matrix Y(z) is equal to the dimension of the space H+ spanned by

the eigenvectors and generalized eigenvectors of E 0 associated

with eigenvalues X satisfying Re(M) > 0 along with the (proper)

eigenvectors of E 0 associated with eigenvalue X = 0. The two-

point boundary-value problem (8), (9) has a unique solution if,

and only if, q = n and Y 2 (x) is an invertible matrix. If q = n,

then Y2 (x) is invertible (and hence (8), (9) has a unique solution)

for all sufficiently small positive x if H+ is invertible, wheren

H
S= (12)

n

is any (m + n) x n matrix the columns of which constitute a basis

for H+. If there exists X > 0 such that (1), (2) has a unique

solution for every x satisfying 0 < x < X, then the matrix

R(z) n Yl(Z)Y 2 (z) 1  (13)

satisfies the Riccati differential equation

R (z) B + BI(Z + (-LO + Al(z)) R(z)
Z 1 Z(14)

-Riz) + D (z) - R(z) + Cl(Z) R(z)

for ze(O,X). Furthermore, if H+ is invertible, thenn

.[
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-1

R(O) H (Hf)- . (15)m n

Henceforth we assume existence of some X as described in the

statement of this theorem. The matrices H+ and H+ of (8) are, of
m n

course, of respective dimensions m x n and n x n. We wish to em-

phasize that invertibility of H+ implies our assumption (regarding

n

X).

If Y1 and Y2 are as above, and u, v are any solution of the

differential system (8) satisfying the regularity condition (9a),

then is is readily shown that there exists a constant vector c such

that

u(z) Yl(Z)C, v(z) = Y2 (z)c. (16a,b)

If additionally v satisfies the boundary-condition (9b), then (16b)

along with invertibility of Y2 (x) gives

C = Y2 (x)
1 8. (17)

Thus if we define

T(z) = Y2 (z) 1  (18)

then (16) can be combined to give

v(z) = T(z)- T(x)S, u(z) = I(z)v(z). (19a.b)

* (i
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Furthermore T is readily shown to satisfy the differential system

T' (z = -T(2z) _+ D1(W) + (-- + Cl(z)) R(z) .(20)

Equations (19) are precisely analogous to the basic formulas

used in determining the solution of a nonsingular (homogeneous)

two-point boundary-value problem by means of Scott's version of

invariant imbedding [1-4]. Furthermore (14) and (15) comprise

an initial-value problem for R. Thus in order to reduce solution

of (8), (9) to solution of initial-value problems and numerical

linear algebra on matrices and vectors of order max(m,n) - which

is the objective of any version of invariant imbedding - it remains

only to determine the value of T(0), so that T can be obtained by

numerical solution of the resulting initial-value problem (along

with that for R).

At this juncture the simple analogy with the nonsingular sit-

uation breaks down, because it readily can happen that Y2 (0) is

noninvertible, so that T(0+) fails to exist. In fact, it also

follows from results in Ref. 11 that Y2 (0) is invertible if, and

only if, the vector space H+ of Theorem A consists entirely of

eigenvectors of E0 associated with the eigenvalue X = 0. In this

(likely rare) event one can simply take T(0) as any invertible

n x n matrix (the identity matrix is certainly the simplest choice),

because any such matrix is Y2 (0) for some choice of Y(z). The

values of R and T can then be obtained by numerical integration of

the initial-value problem consisting of (14), (15) and (20), sub-

ject to the initial value selected for T.

l1 ____
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In the case that Y2 (0) is singular, the only general procedure

we have found is as follows. It is readily shown that Y2 satisfies

the differential equation

D~ l Y(z"(1
Y(4(zl . + C1 (z R(z) + z + D1(z)) Y2 (z).

For 0 < z < z0 one can then determine R(z) and Y2 (z) by numerical

integration of the initial-value problem consisting of (14), (15),

(21) and the initial condition

Y2 (0) = P2  ' (22)

where

is any (m + n) x n matrix the nonzero columns of which constitute

a basis for the null space of E0. With Y2 (z0) thus determined,

T(z0) = Y2 (z0 )-I can be obtained numerically. The required values

of R(z) and T(z) for z > z0 can then be obtained by numerical in-

tegration of (14) and (21) subject to the known values of R(z0)

and T(z0). Alternately one could simply compute Y2 (z) and R(z)

for all desired values of z, and then compute u and v by

V(z) = Y2 (z)Y2 (x)- 8 (23)

and (19b).



There remains one further computational detail. Typical

initial-value codes require the user to supply a subroutine which

computes the derivative. However, the right-hand side of (14) is

indeterminate at z = 0 for R(0) given by (15) and (12), and like-

wise the right-hand of (20) (respectively (21)) in the case that

T(0) (respectively, Y2 (0)) exists. For the problems we have en-

countered it has been possible to determine R' (0) and Y2(0)

(or T'(0), when T(0) exists) by applying L'Hospital's rule to (14)

and (21) (or(20)), although we have no general proof of the effec-

tiveness of this approach.

Several numerical examples illustrating the approach outlined

above are presented in references 15 and 16. In addition the im-

portant special case of a single second-order equation is further

studied in considerable detail, and several results specific to

such problems are obtained.

ii --
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